10 важных причин освоения космоса

Что будет с человеком в космосе без скафандра

Прямо как в фильме «Гравитация»

Давайте на минуту представим, что во время ваших космических путешествий вам по какой-то случайности пришлось оказаться в открытом космосе без скафандра и доступного поблизости космического корабля. Что будет с вашим телом? Из-за отсутствия давления в космосе, примерно через 10 секунд все жидкости, находящиеся вашем организме, начнут закипать и испаряться. Примерно через 15 секунд в вашей кровеносной системе полностью израсходуется весь кислород. Прожить в космосе в таком состоянии вы сможете максимум две минуты, пока повреждения для вашего организма не окажутся критическими. Правда прожить эти две минуты вы сможете только в том случае, если вы не сделаете вдох. Потому что как только вы его сделаете, то воздух, остающийся в ваших легких, заставит их расшириться, а затем просто разорвет на части. Поэтому если вы действительно оказалась в такой ситуации, то первое, что вам нужно сделать, – это выдохнуть. Возможно, проживете на несколько секунд дольше. Но и это еще не все.

Вас также ожидают другие «бонусы» в виде закипающей слюны на вашем языке, солнечных ожогов и кесонной болезни. Несмотря на то, что в космосе температура может быть и как экстремально высокой, так и экстремально низкой, ваше тело не превратится в ледышку. По крайней мере так скоро, как это показывают в фантастических фильмах. Сначала вы полностью высохнете под воздействием космического излучения. Разложения можно не бояться, так как в космической среде нет бактерий. Затем, со временем и в зависимости от температуры, ваше тело полностью замерзнет или мумифицируется.

Утилизация космического мусора

Говорить о том, что космический мусор станет серьезной проблемой, начали еще в 1960-е годы, на заре освоения космоса. Но до сих пор не придумали реальной возможности массово удалять мусор с околоземных орбит. «Существуют программы по удалению космического мусора, но они единичные и не решают проблему. Удалить можно только крупный мусор, то есть более 20 см, с объектами менее 10 см возникают большие сложности», — говорит Бахтигараев из Института астрономии РАН.

Зеленая экономика

Съедобная упаковка и солнечный парус: новинки космических эко-технологий

Так как существующие технологии не способны избавить космос от мусора, то космические агентства начали уделять внимание профилактике. Для новых аппаратов предъявляют стандарты, например, на борту космических аппаратов закладывают ресурс, чтобы они могли уходить от столкновений с мусором

Также их снабжают броней, которая защищает космического мусора, но только от мелкого.

На сегодняшний день работающей технологией по утилизации космического мусора является увод старых спутников на соседние орбиты. Это можно сделать с помощью аппаратов-захватчиков, которые буксируют мусор на орбиты для захоронения. Также отработанные спутники могут сами уходить со своих мест на остатках топлива. Но массово эти методы не применяются.

Считается, что космический мусор не падает на Землю, но это не совсем так. Для отработанных крупных спутников и грузовых кораблей на Земле в Тихом океане существует свое кладбище, где их затапливают, так как они не сгорают в атмосфере. Это место расположено в южной части Тихого океана около точки Немо, самого удаленного от суши места на Земле. Над этим местом запрещено летать и проплывать кораблям. Так проблема космического мусора превращается в проблему земного мусора. С 1971 по 2016 года там захоронили минимум 260 аппаратов.

Сейчас перед астрофизиками стоит задача, как избавиться от мусора на геостационарной орбите или поясе Кларка. Она находится непосредственно над экватором Земли на расстоянии 35 786 км. Эта орбита очень привлекательна для запуска спутников, так как на ней летательные аппараты требуют меньше топлива и охватывают значительно больше поверхности Земли, чем на других орбитах. Однако количество точек стояния спутников на геостационарной орбите ограничено — их около 180

Помимо очистки геостационарной орбиты, важное значение имеет удаление космического мусора в окрестностях МКС, так как станция является дорогостоящей и очень уязвимой

Космический мусор: карты и модели

Чтобы убедиться, что наша планета окружена мусором, не надо лететь в космос. Ученые смоделировали то, как выглядят околоземные орбиты. Один из таких сайтов — «Гид в мире космоса». Карта показывает соотношение работающих спутников к тем, которые уже стали мусором.

Видео от Европейского космического агентства демонстрирует, насколько много мусора находится вокруг Земли. В начале модель показывает обломки больше 1 м, а в самом конце — количество космических объектов от 1 мм:

Это важно для государственной безопасности

Не зря мы выводим в космос сотни спутников

Ведущие мировые страны должны обнаруживать и предотвращать враждебные намерения или террористические группы, которые могут развернуть оружие в космосе или атаковать навигационные, коммуникационные спутники и спутники наблюдения. И хотя США, Россия и Китай в 1967 году заключили договор о неприкосновенности территории в космосе, на нее могут позариться другие страны. И не факт, что договоры прошлого можно пересмотреть.

Даже если эти ведущие страны в большей части освоят ближайший космос, им нужно будет быть уверенными в том, что компании могут добывать полезные ископаемые на Луне или астероидах, не переживая, что их будут терроризировать или узурпировать

Очень важно настроить дипломатические каналы в космосе, с возможным военным использованием

Джордано Бруно и переворот европейского сознания

Главной темой, которой вдохновлялся итальянский поэт, философ и мистик Джордано Бруно, была тема бесконечности, ставшая после первой научной революции неотъемлемой частью европейского сознания.

До «коперниканского поворота» западный научный мир жил в уютной аристотелевско-птолемеевской космологии. Считалось, что Земля — это покоящийся центр Вселенной, а Солнце, Луна и все остальные светила вращаются вокруг нее. Коперник же разработал гелиоцентрическую космологию, согласно которой центром мироздания оказалось Солнце, а не Земля. Последствия этого переворота оказались оглушительными.

Иллюстрация геоцентрической системы мира (португальский картограф и космограф Бартоломеу Велью, 1568 г.)

(Фото: wikipedia.org)

Речь шла не только о радикальной смене взгляда на космос, но о фундаментальном сломе привычного мировоззрения, где Земля — это главный объект принципиально ограниченной Вселенной, о котором неустанно заботится бог. Слом этого мира, осуществленный Коперником, привел к тому, что известный культуролог Карен Свасьян описал как «уход из отчего дома».

Когда человек осознал, что Земля — лишь крохотный объект в бескрайнем пространстве Вселенной, то ощутил и ужас, и восхищение.

Второе ощущение — опьянение бесконечностью и ее поэтизация — было прожито Джордано Бруно. С одной стороны, опираясь на пантеизм (учение о том, что все в мире есть бог и им пронизано), итальянский поэт заявил, что раз Вселенная по своей сути божественна, значит, помимо того, что она одушевлена и разумна, — еще и бесконечна. «Сама природа… есть не что иное, как бог в вещах», — пишет Бруно. С другой стороны, если Вселенная бесконечна, значит у нее нет и центра, следовательно, ничто не мешает предположить, что миров в этой Вселенной бесконечное множество: «Другие миры так же обитаемы, как и этот».

Потому и призвание человека столь же беспредельно, полагал Бруно. Через любовь к миру он должен соединить божественное в себе с божественным во всем (Плотин), двигаясь с «героическим энтузиазмом» навстречу бесконечности Вселенной. По сути, Бруно одним из первых формулирует важнейшую тему нового западноевропейского мира, для которого тяга к бесконечности становится неотъемлемой.

Космические технологии, которые мы используем уже сейчас

Кроссовки с инновационной подошвой

Nike Air

В 1970-е годы инженер NASA Фрэнк Руди придумал, что одежду космонавтов можно сделать более герметичной за счет воздушных прослоек. Разработка Руди стала толчком для создания обуви с полыми подошвами, в которых амортизация снижает нагрузку на суставы во время движения. Происходит это за счет расположенных под пяткой и передней частью стопы подушечек с взаимосвязанными воздушными ячейками. Свою идею инженер начал предлагать производителям кед и ботинок, но откликнулись на космическую разработку только в компании Nike. Дизайнеры Nike решили выставить технологию напоказ и поместили воздушную капсулу в «окошке» прямо под пяткой — так появились Nike Air.

Но кроссовки Nike Air — не единственная модель спортивной обуви, которая появилась благодаря освоению космоса. В 2003 году за несколько минут до приземления разбился шаттл NASA «Колумбия». Установили, что причиной аварии было падение куска теплоизоляционного кислородного бака еще при старте. Это произошло из-за разрушения наружного теплозащитного слоя на левой части крыла.

Adidas AlphaBOUNCE

Во время расследования NASA использовало стереофотограмметрическую систему ARAMIS. Суть ее в следующем. Две синхронизированные камеры снимают процесс столкновения двух материалов. Далее программное обеспечение анализирует их деформацию. Технология похожа на человеческое зрение, которое видит окружающий мир в трехмерной плоскости. «С помощью двух камер мы можем точно понять, приближается или удаляется объект, и оценить расстояния, которые оно преодолевает», — объяснил Джон Тайсон, президент компании, которая построила стереофотограмметрическую систему, используемую NASA.

Такую же технологию решила использовать Adidas для создания новой модели кроссовок AlphaBOUNCE, которые презентовали в 2016 году. Для этого были проанализированы движения ног марафонцев босиком и в обуви. Выяснили, что во время бега кроссовок сжимает сухожилие. Поэтому решили сделать v-образное отверстие в задней части ботинка, чтобы нога могла свободно двигаться. Также разработчики создали материал под названием Forgedmesh, который обеспечивает опору ноги и гибкость движения одновременно.

Фото: NASA

Плавательный костюм

В 2008 году NASA совместно со спортивным брендом Speedo разработало плавательный костюм для спортсменов. Он снижает сопротивление воды на 38%. Это увеличивает скорость пловцов примерно на 4%. Более того, он максимально поддерживает мышцы и не ограничивает движения.

Бесшовный костюм производят из высокотехнологичной сверхлегкой водоотталкивающей ткани. Ткань состоит из переплетенных нитей эластана-нейлона и полиуретана.

Производители утверждают, что благодаря этому костюму у спортсменов на 1,9-2,2% выше вероятность победить. Американские пловцы Натали Кафлин и Майкл Фелпс уверены, что стали олимпийскими чемпионами в 2008-м в том числе благодаря костюму от NASA. На Олимпиаде в Пекине 98% медалистов по водным видам спорта были именно в этом костюме, побив заодно 25 мировых рекорда.

Фото: NASA

Цифровая фотография

Техническим оборудованием для съемки высадки на Луну «Аполлон-11» обеспечила шведская компания Hasselblad. Полвека спустя производители фотоаппаратов снова вернулись к космической теме и сделали камеру для смартфона OnePlus 9 Pro, которая позволяет снимать Луну, используя ночной режим, суперзум и другие инструменты.

По сути, все, что теперь умеют делать камеры, — результат освоения космоса. Это относится не только к профессиональной оптике, но и к матрице, которую используют для компактных девайсов. Чтобы улучшить качество изображения и уменьшить размеры камер для межпланетных миссий придумали технологию CMOS-матриц.

CMOS в цифровых устройствах

Это устройство визуализации на основе полупроводниковых приборов и оксида металла, которое может принимать и обрабатывать световые импульсы и переводить их в изображение. Ее преимущество заключается в низком энергопотреблении, возможности захватывать и обрабатывать изображение. CMOS-матрицы начали создавать еще в 1960-х годах, а в 1990-е их начали использовать в различных цифровых устройствах.

Избавиться от храпа

В космосе невозможно храпеть ночью

Живя в космосе, вы перестанете храпеть по ночам (если, конечно, до этого храпели на Земле). Благодаря пониженному воздействию гравитации на вашу дыхательную систему происходит значительное сокращение различных проблем, связанных с расстройством сна. Вследствие этого вы станете как минимум на 20 процентов меньше раздражать ваших соседей.

Несмотря на то, что некоторый процент гравитации все же будет воздействовать на ваш язычок и мягкое нёбо, эффект, приводящий к непроизвольной вибрации этих мягких тканей, будет существенно снижен, и вы перестанете храпеть.

Китай — Повозка императора Шанди

Астрономы Древнего Китая разделяли небо на 28 вертикальных секторов, «домов», через которые проходит Луна в своем ежемесячном путешествии, как Солнце в годовом вращении проходит через знаки Зодиака в западной астрологии, заимствовавшей 12-секторное деление у египтян. В центре небес, как император в столице государства, китайцы располагали Полярную звезду, уже занявшую к тому времени свое привычное место.

Семь ярчайших звезд Большой Медведицы находятся в почетной близости от нее, в пределах Пурпурной ограды — одной из трех Оград, окружающих дворец «царственной» звезды. Они могли описываться как Северный Ковш, ориентация которого соответствует времени года, или как часть повозки Небесного императора Шанди. И правда, это созвездие куда больше похоже на повозку, нежели чем на большую медведицу, вид которой ему приписывают легенды.

Ухудшение зрения

Принявшие участие в научной работы космонавты рассказали, что в космосе у них ухудшилось зрение. Этому явлению есть научное объяснение. Как известно, внутри человека течет огромное количество жидкости и в условиях невесомости она начинает двигаться не так, как обычно. В 2012 году ученые провели опрос среди членов экипажа космической станции насчет остроты их зрения и около 60% респондентов ответили, что на борту станции начинают видеть хуже. В большинстве случаев, у космонавтов развивается дальнозоркость, то есть один плохо видят с близкого расстояния. Ученые считают, что это связано с накоплением жидкостей в области глаз, из-за чего возникает отек. Этому явлению дано название нейроокулярный синдром и агентство NASA иногда даже отправляет некоторым членах экипажа очки для улучшения зрения.

Некоторые члены экипажа МКС вынуждены работать в очках

На какой срок у космонавтов ухудшается зрение, точно сказать невозможно. Это зависит от индивидуальных особенностей каждого организма. Вообще, многие космонавты изначально обладают отличным зрением, потому что иначе они бы не смогли занять профессию. Так что, даже после пребывания в невесомости и возвращения на Землю зрение некоторых из них оказывается более острым, чем у многих из нас.

На самом деле то, что человеческий организм так сильно меняется в ответ на изменения окружающих условий, это очень интересно. Хотелось бы знать, какие особенности получат первые колонизаторы Марса. На данный момент ученые могут только выдвигать теории, а правду мы узнаем только после 2024 года. Ведь именно в этом году основатель компании SpaceX Илон Маск планирует отправить первых людей на Марс. Недавно он даже организовал встречу со специалистами в области изучения Красной планеты, о чем можно почитать в этом материале.

Планеты-изгои

Более того, планеты-изгои не будут подвержены падениям крупных метеоритов, как когда-то Земля. Они могут быть выброшены из родной солнечной системы даже со своими спутниками на поводке, которые впоследствии обеспечат некоторый нагрев за счет приливных сил.

Энцелад

Даже если у такой планеты нет плотной атмосферы, она все еще может быть обитаемой.

В 2011 году планетолог Дориан Эббот и астрофизик Эрик Швитцер из Университета Чикаго подсчитали, что планеты в три с половиной раза больше Земли могут быть покрыты толстым льдом целиком. Под ним будет океан жидкой воды на много километров ниже поверхности, согретый недрами.

«Общая биологическая активность будет ниже, чем на планете вроде Земли, но вы все еще можете что-нибудь найти», говорил Эббот. Он надеется, что когда космические зонды исследуют подповерхностные океаны ледяной луны Юпитера в ближайшие десятилетия, мы узнаем больше о возможности существования жизни на ледовитых планетах.

Эббот и Швитцер называют эти потерянные миры «планетами Степпенвольфа», поскольку «любая жизнь на таких мирах будет подобна одинокому волку, блуждающему по галактической степи». Срок обитаемости жизни на такой планете может быть до 10 миллиардов лет или около того, подобно тому, что на Земле, говорит Эббот.

За пределами нашей Солнечной системы возможно существует инопланетная жизнь

Если он прав, за пределами нашей Солнечной системы могут быть блуждающие планеты в межзвездном пространстве, а на них — инопланетная жизнь. Обнаружить их на таком расстоянии, крошечные и темные, будет очень сложно. Но если повезет, такая планета может пройти на расстоянии тысяч а. е. (расстояние от Земли до Солнца) и отразить крошечное количество солнечного света. Мы могли бы попытаться увидеть ее с нашими современными телескопами.

Если жизнь может образоваться и выжить на межзвездной планете Степпенвольфа, говорят Эббот и Швитцер, из этого можно сделать простой вывод: жизнь должна быть повсюду во Вселенной. Да, жизнь на них будет чертовски странной. Представьте себе купание в теплых вулканических источниках под вечной ночью, как зимой в Исландии. Но для тех, кто больше ничего не знает, это будет похоже на дом.

Есть ли жизнь в космосе?

Однако все попытки найти в небе признаки других существ оказывались бесплодными. Возможно, потому что земная атмосфера мешает сообщениям доходить до нас. Вот почему те, кто занимается поиском внеземных цивилизаций, готовы разворачивать еще больше орбитальных обсерваторий вроде космического телескопа Джеймса Уэбба. Этот спутник будет запущен в 2018 году и сможет искать химические признаки жизни в атмосферах далеких планет за пределами нашей Солнечной системы. Это только начало. Возможно, дополнительные космические усилия помогут нам, наконец, ответить на вопрос, одиноки ли мы.

В будущем

Космические путешествия захватывали воображение человечества на протяжении веков. И перед появившимися возможности и ресурсами для отправки людей в космос будет трудно устоять.

Эти попытки будут только ускорять исследования вопросов влияния космоса на неврологию и физиологию человека. И позволят находить способы, которыми наши мозги и тела будут приспосабливаться к отдаленным и отличным от Земли средам. Тем, где происходила вся наша эволюционная история.

Они, возможно, так же приведут к рассмотрению более дорогостоящих технических решений. Таких как использование искусственной гравитации для путешествий по маршруту Земля-Марс и Марс-Земля. Или более быстрый перелет (хотя и дорогостоящий с точки зрения энергетики, но позволяющий достичь Марса меньше чем за три месяца). Или может строительство удобных больших подземных жилых объектов на Марсе.

Теории

Например, по утверждению некоторых ученых возникновение и затухание жизни на нашей планете связано с движением Солнечной системы в диске Галактики Млечного пути. Периодичность которого составляет 64 млн. лет. Обнаруженные на дне океана ископаемые останки указали, что биологическое разнообразие на Земле меняется в соответствии с промежутком в 62 млн. лет. А массовые вымирания живых организмов происходили с 250 и 450 млн. лет назад. Такую цикличность объясняют движением всей Галактик вокруг какого-то центра и прохождения зон с неблагоприятными для жизни условиями. В своем движении галактики сближаются между собой и другими скоплениями звезд, что изменяет гравитационные функции. Это также влияет на планеты, входящие в их состав, и биосферу Земли в том числе. Нарушение гравитационных показателей влечет за собой изменение радиационного фона и климата. Доказательством этого существуют. Климат на Земле менялся не раз, что приводило к массовой гибели живых организмов. Изменение гравитационного поля может привести к появлению ударной волны огромной мощности и движущейся со скоростью до 1000 км/сек.

В научных кругах космос и биосфера объединены теорией происхождения жизни. Причем теории различаются в способе появления первых живых объектов. Одни утверждают космическое их происхождении, другие о благоприятно сложившихся на планете обстоятельствах и условиях.

Так, считают, связана биосфера и космические циклы.

Проблемы с сердцем

Специалисты отмечают, что после возвращения на Землю сердце обретает свою изначальную форму, однако никому не известно, как один из важнейших органов нашего организма поведет себя после долгих перелетов. Докторам уже известны случаи, когда вернувшиеся обратно астронавты испытывали головокружение и дезориентацию. В некоторых случаях отмечается резкое изменение в артериальном давлении (происходит его резкое снижение), особенно когда человек пытается встать на ноги. Помимо этого, у некоторых астронавтов во время миссий наблюдается аритмия (нарушение сердечного ритма).

Исследователи отмечают необходимость в разработке методов и правил, которые позволят путешественникам дальнего космоса избежать данные виды проблем. Как отмечается, такие методы и правила могли бы пригодиться не только космонавтам, но и обычным людям на Земле — испытывающим проблемы работы сердца, а также тем, кому прописан постельный режим.

В настоящий момент началась пятилетняя исследовательская программа, задачей которой будет определение уровня воздействия космоса на ускорение развития у космонавтов атеросклероза (болезнь кровеносных сосудов).

Основные направления развития

По предварительным оценкам, к 2030 году мировой космический рынок будет составлять £400 млрд (примерно ₽40 трлн). На данный момент это самый дальний прогноз, и говорить о дальнейших вкладах в индустрию пока невозможно. Но предполагается, что к 2081 году цифра только продолжит расти. В космическую отрасль приходят государственные и частные компании, и все они смотрят в одном направлении развития. На ближайшие 60 лет участники космических исследований ставят себе шесть основных целей:

  1. Автоматизация и роботизация исследований космоса в пределах и за пределами Солнечной системы;
  2. Развитие мощных телескопов для изучения глубинного космоса;
  3. Открытие новых планет, в том числе пригодных для жизни;
  4. Разработка и создание инновационных космических аппаратов;
  5. Космический туризм;
  6. Полеты на соседние и дальние планеты и их последующая колонизация.

Прямо сейчас американский ровер Perseverance ищет признаки жизни на Марсе, беспилотный космический зонд New Horizons почти покинул пределы Солнечной системы, а в Чили строится чрезвычайно большой телескоп, аналогов которому нет в мире. Коммерческие компании двух самых богатых людей планеты, SpaceX Илона Маска и Blue Origin Джеффа Безоса, вкладывают миллиарды долларов в развитие космоса и разрабатывают технологии для космических полетов. Разбираемся, к чему могут привести все эти разработки.

Экономика инноваций

Что изменится в Сети после запуска спутников Илона Маска и Джеффа Безоса

Картография влажности почвы

SMAP будет записывать довольно много данных с орбиты, поскольку может измерять воду отдельно в почве, в растениях и в частях корней. В более широком масштабе, спутник также сможет сказать, где земля замерзла, хотя и не сможет измерить лед.

Спутник будет путешествовать от полюса до полюса каждые 98 минут, проходя и картографируя одну и ту же область каждые два-три дня и создавая чрезвычайно подробную карту изменений почвенных условий в течение многих лет. Влияние может быть невероятным, поскольку это позволит ученым прогнозировать погодные условия, определять лучшее время для выращивания, сбора и посева сельскохозяйственных культур, предсказывать бури, дождливые сезоны и изменения погодных условий. Заполучив ежегодные данные, они также смогут анализировать изменения погоды от года к году, а также предполагать плохие годы для урожая.

История открытия космических лучей

В начале двадцатого века многие физики исследовали  спонтанную ионизацию газа радиацией. Откуда возникал ток в камерах с газом, стенки которых были из свинца толщиной в полметра? Такой механизм пытались объяснить влиянием радиоактивного распада в недрах Земли и какое-то время гипотеза была рабочей.

Австрийско-американский физик ВИКТОР ФРАНЦ ХЕСС, лауреат Нобелевской премии по физике (1936 г.) за открытие космических лучей.

Однако, в 1912 году исследователь Хесс провел эксперимент с подъемом камер на воздушных шарах. Он обнаружил, что с набором высоты спонтанная ионизация газа нарастала. То есть, чем дальше от Земли – тем больше радиация. После этого уже почти не осталось сомнения, что имеет место некое излучение из космоса.

Первым их окрестил космическими лучами американских физик Милликен. Он же определил приблизительную интенсивность и энергию этого излучения, сравнив его с гамма-радиацией атомных ядер. А в 1932 году Андерсон открыл в космических лучах позитроны, в 1955 – мюоны и мезоны. В 1958 Ван Аллен обнаружил вокруг Земли так называемые радиационные пояса, которые создаются высокоэнергетическими частицами галактического излучения.

Карта всего в высоком разрешении

Одним из самых интересных применений фотографий, взятых ASTER, стала археология. Снимки высокого разрешения выявили такие вещи, как окаменелости, кости и каменные орудия в Олдувайском ущелье в Танзании. По оценкам, эти окаменелости принадлежат самым ранним человеческим цивилизациям в истории, которые жили еще 2,1 миллиона лет назад. Область, которая была раскопана в 1930-х годах, также прячет древнейшие окаменелости человека.

Данные, поступающие от ASTER, демонстрируют невероятное разнообразие удивительных природных явлений. ASTER прогнозирует вулканические извержения, сигнализирует о начале и распространении лесных пожаров, о создании лавовых озер, массивных изменениях в ландшафте планеты из-за эрозии, повышения уровня моря и вырубки лесов. Также его данные помогают наблюдать за охраняемыми районами вроде национальных парков и заповедников.

Исследования НАСА

Космонавты, которые проводили длительные периоды времени в космосе, имеют структурные изменения глаз. Еще у них обнаружены аномально высокие уровни цереброспинальных жидкостей в головном мозге. Было продемонстрировано, что космический полеты также влияют на хрупкие окончания зрительных нервов.

Существуют свидетельства того, что воздействие галактического космического излучения увеличивает риск развития сердечно-сосудистых заболеваний. Возрастает риск рака, расстройств центральной нервной системы и острого лучевого синдрома. И эти риски могут быть даже серьезнее, чем считалось раньше.

Одно из проведенных исследований показало, что космонавты, покорившие Луну, в четыре раза чаще умирают от сердечно-сосудистых заболеваний. Если сравнивать с теми, которые не вылетали за пределы защитной магнитосферы Земли.

Кроме того, ученые все чаще исследуют психологические проблемы, связанные с космическими полетами. Космонавты, которые отправятся в дальние космические путешествия — на Луну, Марс и за его пределы, скорее всего будут изолированы во враждебной и стрессовой обстановке вместе с другими людьми, не имея возможности вернуться на Землю или быстро спастись.

Влияние на человека и социум

Никакого ощутимого влияния у поверхности Земли космическое излучение не имеет и негативных эффектов на здоровье человека не оказывает. Это связано с тем, что атмосфера и магнитосфера планеты нейтрализуют все виды корпускулярных лучей. Естественно, здесь речь не идет о гамма-всплесках, а только о галактических и солнечных частицах.

Гамма-всплески, в свою очередь, по расчетам могут вызывать катастрофические последствия для жизни. Так, если выброс джета от сверхновой нужного типа произойдет на расстоянии 300 световых лет от нас – всплеск буквально выжжет всю планету дотла. Энергия воздействия будет равноценна взрыву термоядерной бомбы на каждый квадратный километр! Но нужно помнить, что во-первых, эти события очень редки, а во-вторых, должны быть прицельно направлены на Землю, а в бескрайнем космосе такая вероятность ничтожно мала.

С другой стороны, космические лучи приобретают большую важность в космонавтике, особенно в будущих межпланетных перелетах. Потому что они могут наносить существенный вред астронавтам без защиты магнитосферы Земли

Высокоэнергетичные частицы могут повреждать ДНК клеток человека и вызывать опасные для жизни заболевания.

Государства могут мирно работать вместе

Ранее мы уже упомянули о зловещей угрозе международного конфликта в космосе. Но все может быть и мирно, если вспомнить о сотрудничестве разных стран на Международной космической станции. Космическая программа США, например, позволяет другим странам, большим и не очень, объединять свои усилия в исследовании космоса.

Международное сотрудничество на поле космоса будет исключительно взаимовыгодным. С одной стороны, большие расходы были бы распределены на всех. С другой — это помогло бы установить тесные дипломатические отношения между странами и создать новые рабочие места для обеих сторон.

Космос полезен для здоровья

Возможно, нам даже удастся победить рак

Международная космическая станция породила множество медицинских инноваций, которые нашли применение на Земле, например, способ доставки противораковых лекарств непосредственно к опухоли; устройство, которое позволяет медсестре проводить УЗИ и передавать результаты врачу за тысячи километров; роботизированный манипулятор, который может выполнять сложную операцию внутри аппарата МРТ.

Ученые NASA, стремясь защитить астронавтов от потери костной и мышечной массы в условиях микрогравитации космоса, также помогли фармацевтической компании испытать Prolia, препарат, который сегодня может спасти пожилых людей от остеопороза. Легче было испытать лекарство на астронавтах, которые теряют 1,5% костной массы каждый месяц, нежели на пожилой женщине на Земле, которая теряет 1,5% ежегодно из-за остеопороза.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector